

Technical Note : Chemical Resistance for Geomembranes

Rowad geomembranes are made of high quality, virgin polyethylene which demonstrates excellent chemical resistance. Rowad polyethylene geomembranes are resistant to a great number and combinations of chemicals. It is this property of (HDPE) high density polyethylene geomembranes that makes it the lining material of choice.

In order to gauge the durability of a material in contact with a chemical mixture, testing is required in which the material is exposed to the chemical environment in question. Chemical resistance testing is a very large and complex topic because of two factors. First, the number of specific media is virtually endless and second, there are many criteria such as tensile strength, hardness, etc. that may be used to assess a material's resistance to degradation.

The chemical resistance of polyethylene has been investigated by many people over the past few decades. We are able to draw from that work when making statements about the chemical resistance of today's polyethylene geomembranes. In addition to that, many tests have been performed that specifically use geomembranes and certain chemical mixtures. Naturally, however, every mixture of chemicals cannot be tested for. As a result of these factors, Rowad published a chemical resistance chart, demonstrating general guidelines.

Polyethylene is, for practical purposes, considered impermeable. Be aware, however, that all materials are permeable to some extent. Permeability varies with concentration, temperature, pressure and type of permeant. The rates of permeation are usually so low, however, that they are insignificant. As a point of reference, polyethylene is commonly used for packaging of several types of materials. These include gaso line, motor oil, household cleaners (i.e. bleach), muratic acid, pesticides, insecticides, fungicides, and other highly concentrated chemicals. Also, you should be aware that there are some chemicals which may be absorbed by the material but only when present at very high concentrations. These include halogenated and/or aromatic hydrocarbons at greater than 50%; their absorption results in swelling and slight changes in physical properties such as increased tensile elongations. This includes many types of fuels and oils. Recognize that this action, however, does not affect the liner's ability to act as a barrier for the material it is containing.

Since polyethylene is a petroleum product, it can absorb other petroleum products. Like a sponge, the material becomes slightly thicker and more flexible but does not produce a hole or void. However, unlike a sponge, this absorption is not immediate. It takes a much longer time for a polyethylene liner to swell than it does for a sponge. The exact time it takes for swelling to occur depends on the particular constituents and concentrations of the contained media. However, a hole would not be produced. Also, this absorption is reversible and the material will essentially return to it's original state when the chemical is no longer in contact with the liner.

With regard to typical municipal landfills in the Africa, Australia & GCC legally allowable levels of chemicals have been demonstrated to have no adverse affect on polyethylene geomembrane performance. The very low levels of salts, metals and organic compounds do not damage polyethylene. A double-lined containment with a leachate (leak detection) removal system effectively prevents any significant, continuous exposure of the secondary membrane to these materials and for practical purposes makes the total liner system even more impermeable.

This information is provided for reference purposes only and is not intended as a warranty or guarantee. Rowad assumes no liability in connection with the use of this information. Please check with us for current. Standard minimum quality assurance procedures and specifications

Technical Note: Chemical Resistance Chart

Produced by a world-leading supplier of high quality polyethylene geomembranes, Rowad's polyethylene geomembranes are resistant to a great number and combinations of chemicals. Note that the effect of chemicals on any material is influenced by a number of variable factors such as temperature, concentration, exposed area and duration. Many tests have been performed that use geomembranes and certain specific chemical mixtures. Naturally, however, every mixture of chemicals cannot be tested for, and various criteria may be used to judge performance. Reported performance ratings may not apply to all applications of a given material in the same chemical. Therefore, these ratings are offered as a guide only. This information is provided for reference purposes only and is not intended as a warranty or guarantee. Rowad assumes no liability in connection with the use of this information.

		Resistance at:	
Medium	Concentration	20°C	60 [°] C
		(68 °F)	(140 °F)
Α			
Acetic acid	100%	S	L
Acetic acid	10%	S	S
Acetic acid anhydride	100%	S	L
Acetone	100%	L	L
Adipic acid	sat. sol.	S	S
Allyl alcohol	96%	S	S
Aluminum chloride	sat. sol.	S	S
Aluminum fluoride	sat. sol.	S	S
Aluminum sulfate	sat. sol.	S	S
Alum	sol.	S	S
Ammonia, aqueous	dil. sol.	S	S
Ammonia, gaseous dry	100%	S	S
Ammonia, liquid	100%	S	S
Ammonium chloride	sat. sol.	S	S
Ammonium fluoride	sol.	S	S
Ammonium nitrate	sat. sol.	S	S
Ammonium sulfate	sat. sol.	S	S
Ammonium sulfide	sol.	S	S
Amyl acetate	100%	S	L
Amyl alcohol	100%	S	L
Aniline	100%	S	L
Antimony trichloride	90%	S	S
Arsenic acid	sat. sol.	S	S
Aqua regia	HCI-HNO3	U	U
В			
Barium carbonate	sat. sol.	S	S
Barium chloride	sat. sol.	S	S
Barium hydroxide	sat. sol.	S	S
Barium sulfate	sat. sol.	S	S
Barium sulfide	sol.	S	S
Benzaldehyde	100%	S	L
Benzene	-	L	L
Benzoic acid	sat. sol.	S	S
Beer	-	S	S
Borax (sodium tetraborate)	sat. sol.	S	S
Boric acid	sat. sol.	S	S
Bromine, gaseous dry	100%	U	U
Bromine, liquid	100%	U	U
Butane, gaseous	100%	S	S
I-Butanol	100%	S	S
Butyric acid	100%	S	L
С			
Calcium carbonate	sat. sol.	S	S
Calcium chlorate	sat. sol.	S	S
Calcium chloride	sat. sol.	S	S
Calcium nitrate	sat. sol.	S	S
Calcium sulfate	sat. sol.	S	S
Calcium sulfide	dil. sol.	L	L
Carbon dioxide, gaseous dry	100%	S	S
Carbon disulfide	100%	L	U
Carbon monoxide	100%	S	S
Chloracetic acid	sol.	S	<u>S</u>

		Resi	stance at:
Medium	Concentration	20°C	60 [°] C
		(68 °F)	(140 °F)
	1000/	· · ·	
Carbon tetrachloride	100%	<u>L</u>	U
chiorine, aqueous solution	Sat.sol.	L	U
Chlorine, gaseous dry	100%	L	U
Chloroform	100%	U	U
Chromic acid	20%	S	L
Chromic acid	50%	S	L
Citric acid	Sat.sol.	S	S
Copper chloride	sat. sol.	S	S
Copper pitrate	sat sol	S	S
Copper sulfate	sat sol		
Cresylic acid	sat sol	<u>_</u>	5
Cyclohexanol	100%	S	S
Cyclohexanone	100%	Š	
D		ŭ	
Decahydronaphthalene	100%	S	L
Dextrine	sol.	S	S
Diethyl ether	100%	L	
Dioctylphthalate	100%	S	L
Dioxane	100%	S	S
E			
Ethanediol	100%	S	S
Ethanol	40%	S	L
Ethyl acetate	100%	S	U
Ethylene trichloride	100%	U	U
F			
Ferric chloride	sat. sol.	S	S
Ferric nitrate	sol.	S	S
Ferric sulfate	sat. sol.	S	S
Ferrous chloride	sat. sol.	S	S
Ferrous sulfate	sat. sol.	S	S
Fluorine, gaseous	100%	U	U
Fluorosilicic acid	40%	S	S
Formaldehyde	40%	S	S
Formic acid	50%	S	S
Formic acid	98-100%	S	S
Furfuryl alcohol	100%	S	L
G			
Gasoline	-	S	L
Glacial acetic acid	96%	S	L
Glucose	sat. sol.	S	S
Glycerine	100%	S	S
Glycol	sol.	S	S
Н			
Heptane	100%	S	U
Hydrobromic acid	50%	S	S
Hydrobromic acid	100%	S	S
Hydrochloric acid	10%	S	S
Hydrochloric acid	35%	S	S
Hydrocyanic acid	10%	<u>S</u>	S
Hydrofluoric acid	4%	S	S
Hydrofluoric acid	60%	S	L
Hydrogen	100%	S	<u>S</u>
Hydrogen peroxide	30%	S	L
Hydrogen peroxide	90%	S	U
Hydrogen sulfide, gaseous	100%	S	S
L Lestis said	1000/		
	100%	<u> </u>	S
Lead acetate	sat. sol.	<u> </u>	
	· · ·		
Magnesium carbonate	sat. sol.	S	S
iviagnesium chloride	sat. sol.	<u> </u>	S
Magnesium hydroxide	sat. sol.	<u> </u>	S
iviagnesium nitrate	sat. sol.	<u> </u>	S
Maleic acid	sat. sol.	S	S
Mercuric chloride	sat. sol.	S	S

		Resis	stance at:
Medium	Concentration	20°C	60°C
modiani		(68 °F)	(140 °F)
Manaunia avanida	ant and	(66 1)	
Mercuric cyanide	sat. sol.	5	5
Mercuric nitrate	SOI.	S	S
Mercury	100%	<u> </u>	S
Methanol	100%	S	S
Methylene chloride	100%	L	-
Milk	-	S	S
Molasses	-	5	5
N			
Nickel chloride	sat. sol.	<u> </u>	5
Nickel nitrate	sat. sol.	S	<u> </u>
Nickel suitate		<u> </u>	5
Nicotinic acid	dli. sol.	<u> </u>	-
Nitric acid	25%	S	5
NITIC ACIO	50%	<u> </u>	U
Nitric acid	100%	0	0
	100%	0	0
Oile and Crasse		ŝ	1
	- 100%	5	
Orthophophoria acid	100% F0%	5	L
Orthophosphoric acid	<u> </u>	5	5
Orthophospholic acid		<u>S</u>	L
		<u>S</u>	3
	100%		
D	100 %	L	0
P Detroloum (korocono)		3	
Petroleum (kerosene)	-	<u>S</u>	
Phenoi Deceberus tricWarida	100%	S	<u>_</u>
Photographic doveloper		<u>5</u>	
Priotographic developer	sat sol	<u>5</u>	3
Potassium bicarbonato	sat sol	<u>5</u>	-
Potassium bisulfide	sol	<u>5</u>	S
Potassium bromato	sot col		S
Potassium bromide	sat sol	<u>5</u>	<u>5</u>
Potassium carbonate	sat sol	<u>5</u>	
Potassium cWorate	sat sol	<u>5</u>	
Potassium chloride	sat sol	S	S
Potassium chromate	sat sol	S	S
Potassium cvanide	sol	S	Š
Potassium dichromate	sat sol	S	Š
Potassium ferricyanide	sat, sol	S	S
Potassium ferrocyanide	sat. sol.	S	S
Potassium fluoride	sat. sol.	S	S
Potassium hydroxide	10%	S	S
Potassium hydroxide	sol.	S	S
Potassium hypochlorite	sol.	S	Ĺ
Potassium nitrate	sat. sol.	S	S
Potassium orthophosphate	sat. sol.	S	S
Potassium perchlorate	sat. sol.	S	S
Potassium permanganate	20%	S	S
Potassium persulfate	sat. sol.	S	S
Potassium sulfate	sat. sol.	S	S
Potassium sulfite	sol.	S	S
Propionic acid	50%	S	S
Propionic acid	100%	S	L
Pyridine	100%	S	L
Q			
Quinol (Hydroguinone)	sat. sol.	S	S
5			
Salicylic acid	sat. sol.	S	S

		Resis	tance at:
Medium	Conentration	20°C	60 °C
		(68 °F)	(140 °F)
011			(
Silver acetate	sat. sol.	S	S
Silver cyanide	sat. sol.	S	S
Silver nitrate	sat. sol.	S	S
Sodium benzoate	sat. sol.	S	S
Sodium bicarbonate	sat. sol.	S	S
Sodium biphosphate	sat. sol.	S	S
Sodium bisulfite	sol.	S	S
Sodium bromide	sat. sol.	S	S
Sodium carbonate	sat sol	S	S
Sodium chlorate	sat. sol.	S	S
Sodium chloride	sat. sol.	S	S
Sodium cyanide	sat. sol.	S	S
Sodium ferricyanide	sat. sol.	S	S
Sodium ferrocyanide	sat. sol.	S	S
Sodium fluoride	sat. sol.	S	S
Sodium hydroxide	40%	S	S
Sodium hydroxide	<u>sat. so</u> I.	S	S
Sodium hypochlorite	15% active chlorine	S	S
Casilium nitrata	ant and		ĥ
Sodium nitrate	Sat. sol.	5	5
Sodium nitrite	sat. sol.	<u> </u>	<u> </u>
Sodium orthophosphate	sat. sol.	S	<u> </u>
Sodium sul fate	sat. sol.	S	S
Sodium sulfide	sat. sol.	S	S
Sulfur dioxide, dry	100%	S	S
Sulfur trioxide	100%	U	U
Sulfuric acid	10%	S	S
Sulfuric acid	50%	S	S
Sulfuric acid	98%	S	U
Sulfuric acid	fuming	U	U
Sulfurous acid	30%	S	S
Т			
Tannic acid	sol.	S	S
Tartaric acid	sol.	S	S
Thionyl chloride	100%	L	U
Toluene	100%	L	U
Triethylamine	sol.	S	L
U			
Urea	sol	S	S
Urine	-	S	
W		3	
Water		2	c
Wine vineger		S	
Wine vinegal		5	5
	-	5	5
A Vidence	100%		11
Ayienes	100%	L	U
Y			
Yeast	sol.	S	S
۷			
Zinc carbonate	sat. sol.	S	S
Zinc chloride	sat. sol.	S	S
Zinc (II) cWoride	sat. sol.	S	S
Zinc (IV) chloride	sat. sol.	S	S
Zinc oxide	sat. sol.	S	S
Zinc sulfate	sat. sol.	S	S
Specific immersion testing should	be undertaken to ascertain the suit	ability of chemicals not li	sted above with

reference to special requirements.

NOTES:

(S) Satisfactory: Liner material is resistant to the given reagent at the given concentration and temperature. No mechanical or chemical degradation is observed.

(L) Limited Application Possible: Liner material may reflect some attack. Factors such as concentration. pressure and temperature directly affect liner performance against the given media. Application, however, is possible under less severe conditions. e.g. lower concentration, secondary containment. additional liner protections, etc.

(U) Unsatisfactory: Liner material is not resistant to the given reagent at the given concentration and temperature. Mechanical and/or chemical degradation is observed.

(-) Not tested

sat. sol .= Saturated aqueous solution, prepared at 20°C (68°F)

sol. = aqueous solution with concentration above 10% but below saturation level

dil. sol. = diluted aqueous solution with concentration below 10% cust. conc. = customary service concentration